

The potential role of flexible CCS in deep decarbonization of the electricity sector

Jesse D. Jenkins

Assistant Professor, Princeton University | Department of Mechanical & Aerospace Engineering and the Andlinger Center for Energy and Environment

"Flexible Carbon Capture Technologies for a Renewable-Heavy Grid," ARPA-E Workshop | July 30, 2019

TWIN CHALLENGES: ZERO CARBON, DOUBLE DEMAND

Data source: Iyer et al. 2017, GGCAM USA Analysis of U.S. Electric Power Sector Transitions (performed for the United States Mid-Century Strategy for Deep Decarbonization), Pacific Northwest National Laboratory; 2020 zero-carbon electricity supply from EIA Annual Energy Outlook 2019.

THE RAPID SWITCH: NEW ZERO CARBON ELECTRICITY NEEDED

Data source: Difference between projected electricity demand in Iyer et al. 2017 and 2020 zero-carbon electricity supply from EIA Annual Energy Outlook 2019. Assumes all 2020 generation can be sustained through 2050. Retirements of existing capacity would increase new zero-carbon generation needed.

HISTORICAL PRECEDENTS (SCALED TO U.S. POPULATION)

Data source: Historical per capita deployment rates from MIT 2018, The Future of Nuclear in a Carbon Constrained World, scaled to based on projected 2035 U.S. population of 364 million from U.S. Census Bureau.

Joule

ARTICLE | ONLINE NOW

Log in

醪

Register

ョ

Subscribe

Subscribe

涔

Save

Share

Claim

G

Reprints

Northern System

0

Request

age Cost of Electricity Nestor A. Sepulveda A 4 ☑ Jesse D. Jenkins Fernando J. de Sisternes Richard K. Lester A ☑ Fernando J. de Sisternes Show footnotes

Published: September 06, 2018 • DOI: https://doi.org/10.1016/j.joule.2018.08.006

http://bit.ly/FirmLowCarbon

Highlights

- Firm low-carbon resources consistently lower decarbonized electricity system costs
- Availability of firm low-carbon resources reduces costs 10%— 62% in zero-CO 2 cases
- Without these resources, electricity costs rise rapidly as CO 2 limits near zero

Recommend Joule to Your Librarian

PlumX Metrics

Keywords References

Highlights

Summary

Graphical Abstract

Article Info

Data source: Sepulveda, N., Jenkins, J.D., et al. (2018), "The role of firm low-carbon resources in deep decarbonization of electric power systems," *Joule* 2(11).

Data source: Sepulveda, N., Jenkins, J.D., et al. (2018), "The role of firm low-carbon resources in deep decarbonization of electric power systems," *Joule* 2(11).

NATURAL GAS WITH CCS MAY PLAY SIGNIFICANT ROLE

NATURAL GAS WITH CCS IS OPERATED FLEXIBLY

Firm Technologies

CCGT Capacity Factor
CCGT Capacity Factor

share

Energy 3

BioGas Capacity Factor
BioMass Capacity Factor

CCGT with CCS Capacity Factor

Nuclear Capacity Factor

AN EXAMPLE OF FLEXIBLE CCS IN A ZERO CARBON ELECTRICITY SYSTEM

Detailed case results for Northern system, very low cost scenario for all resources

ANNUAL GENERATION DURATION CURVE

UNIT COMMITMENT DISTRIBUTION

HOURLY DISPATCH DURING PEAK DEMAND WEEK (JULY)

AN EXAMPLE OF FLEXIBLE CCS IN A ZERO CARBON ELECTRICITY SYSTEM

Detailed case results for Southern system, very low cost scenario for all resources

ANNUAL GENERATION DURATION CURVE

UNIT COMMITMENT DISTRIBUTION

HOURLY DISPATCH DURING PEAK DEMAND WEEK (AUGUST)

SOME OPEN QUESTIONS

- What is the ideal "design space" for CCS from the electricity system perspective? What set of cost and performance characteristics are most attractive/make CCS most competitive?
 - Capital and fixed O&M costs; Capture efficiency; Heat rate; Ramping rates;
 Minimum turndown / stable output; Cycling costs; Cycling time
- How does availability of other competing or complementary resources (e.g. nuclear, storage, flexible demand, wind vs. solar heavy systems) affect the ideal design space for CCS?
- How valuable is it to de-couple parasitic loads for the capture process to enhance flexibility (e.g. storing oxygen for oxyfuel combustion, storing saturated amines for later CO2 removal)
- Is it valuable to have a variable capture rate (with tradeoffs in heat rate)? Is it worth achieving
 a lower turndown level by increasing capture rate at a greater efficiency penalty vs. cycling off
 the plant?
- Are there cost-effective/competitive opportunities for coupling thermal or electrical storage?

Jesse D. Jenkins

Assistant Professor

Department of Mechanical & Aerospace Engineering and Andlinger Center for Energy & Environment

Princeton University

Twitter: @JesseJenkins

Linkedin.com/in/jessedjenkins

Google scholar: http://bit.ly/ScholarJenkins